

Using Drilling Fluids to Optimise Productivity

James Mansell Clear Solutions International Itd

7/11/2012 - 16:00

Drilling Fluid Functions

- Stabilise the borehole
- Suspend and transport drilled solids
- Settle drilled solids at surface
- Control subsurface pressures
- Lubricate drill rods and drill bit
- Cool drill rods and drill bit
- Lubricate product being installed
- Optimise equipment performance

To maximise profits and control costs we need to minimise and manage risk

> In all drilling applications RISK = THE GROUND

Correct Soil Identification Is Critical

Non-Reactive (Coarse Soils)

> Sand Gravel Cobble Boulders Rock

Formation Types

COARSE SOILS SAND, GRAVEL AND ROCK

POROSITY & PERMEABILITY

INERT & NON-REACTIVE DON'T SWELL DON'T GET STICKY

FINE SOILS CLAY AND SHALE

SWELL & GET STICKY

LOW POROSITY & PERMEABILITY

Requirements of the Drilling Fluid

Viscosity	= Aids transport of drilled cuttings at low annular velocity.
	BEWARE viscosity also creates resistance to flow (the higher the viscosity the greater the annular pressure and the chance of fluid loss).
Gel Strength	= Suspends and supports the drilled cuttings during periods of inactivity.
Filter Cake	= Controls fluid loss and stabilise unconsolidated formations.
Inhibition	= Control clay and shale hydration and help prevent bit balling.
Velocity	= To aid hole cleaning

Drilling Fluid Must be Designed for the Specific Formation

Fine to Medium Sand

Pure-Bore[®] Creating a Tight Firm Filter Cake to Seal and Support Unconsolidated Sand

Clay & Water (Reactive Soils)

Clay in Water Swells, Hydrates and Gets Sticky

Clay Mixed With Water/Pure-Bore®

Pure-Bore[®] Polymer Encapsulates Clay Reducing Hydration, Swelling and Sticking

Pure-Bore[®] in action – clay cuttings removed over shale shaker

How Do We Drill Deeper, Faster and More Cost Effectively

The answer is to:

- Use a lower circulating pressure
- Reduce the mud weight whilst maintaining a positive hydrostatic head
- Optimise hole cleaning

By reducing the viscosity of the drilling fluid we reduce the circulation pressure.

At the same time we need to provide adequate viscosity to effectively remove the drilled solids.

AN INTERESTING DILEMA!!!!

FORTUNATELY WE HAVE THE ANSWER

Laminar Flow in a Clean High Shear Thinning Drilling Fluid (Pure-Bore®)

Laminar Flow in a Low Shear Thinning Drilling Fluid (Liquimud[®])

Dirty, Low Shear Thinning, Drilling Fluid Breaking Over Into Turbulent Flow

The Answer is to Develop Highly Shear Thinning Drilling Fluids

Pure-Bore[®] / PHPA Polymer Rheology

Excellent Hole Cleaning Using Ultra-Bore[®] Ultra High Shear Drilling Fluid

Ascending Annular Velocity

Recommended ascending velocity 25 to 50 meters per minute

Pure-Bore[®] What Does It Do

Viscosity	= Aids transport of drilled cuttings at low annular velocity.
Gel Strength	= Suspends and supports the drilled cuttings during periods of inactivity.
Filter Cake	= Controls fluid loss and stabilises the formation.
Inhibitive	= Inhibits clay and shale from swelling and stabilises the formation.
Biodegradable	= Non-Toxic and biodegrades in 4 - 6 weeks unless stabilised for longer projects
Recycles	= Can be recycled through standard recycling equipment
Low cost disposal	= As Pure-Bore [®] slurry biodegrades drilled cuttings settle out:

- Water phase goes to sewage treatment.
- Solid phase goes to land fill.

Venturi Style Mixing Hopper For Mixing Dry Powders

© 2012 Clear Solutions International Ltd© 2012 Clear Solutions International Ltd. All Rights Reserved All Rights Reserved Ultra-Clean 600™ Drilling Fluid Mixing and Recycling System

The End!

Presented By James Mansell

The information and data contained herein are believed to be accurate and reliable. Clear Solutions International Ltd makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

